COS 423

Problem Set No. 6

Due, Tuesday May 16

Spring 2006

(Deans Date)

No Collaboration
1. (Textbook, #9, p.597) Give a polynomial-time algorithm for the following problem. We are given a binary tree
[image: image1.wmf](,)

TVE

=

with an even number of nodes, and a nonnegative weight on each edge. We wish to find a partition of the nodes
[image: image2.wmf]V

into two sets of equal size so that the weight of the cut between the two sets is as large as possible (i.e., the total weight of edges with one end in each set is as large as possible). Note that the restriction that the graph is a tree is crucial here, but the assumption that the tree is binary is not. The problem is NP-hard in general graphs.
2. (Textbook, #1, p.651) Suppose you’re acting as a consultant for the Port Authority of a small Pacific Rim nation. They’re currently doing a multi-billion-dollar business per year, and their revenue is constrained almost entirely by the rate at which they can unload ships that arrive in the port.

Here’s a basic sort of problem they face. A ship arrives, with
[image: image3.wmf]n

containers of weight
[image: image4.wmf]12

,,...,.

n

www

 Standing on the dock is a set of trucks, each of which can hold
[image: image5.wmf]k

units of weight. (You can assume the
[image: image6.wmf]k

and each
[image: image7.wmf]i

w

is an integer.) You can stack multiple containers in each truck, subject to the weight restriction of
[image: image8.wmf];

K

 the goal is to minimize the number of trucks that are needed in order to carry all the containers. This problem is NP-complete (you don’t have to prove this).

A greedy algorithm you might use for this is the following. Start with an empty truck, and begin piling containers 1,2,3,…into it until you get to a container that would overflow the weight limit. Now declare this truck “loaded” and send it off; then continue the process with a fresh truck. This algorithm, by considering trucks one at a time, may not achieve the most efficient way to pack the full set of containers into an available collection of trucks.

(a) Give an example of a set of weights, and a value of
[image: image9.wmf],

K

where this algorithm does not use the minimum possible number of trucks.

(b) Show, however, that the number of trucks used by this algorithm is within a factor of 2 of the minimum possible number, for any set of weights and any value of
[image: image10.wmf].

K

3. Consider the greedy algorithm for approximating a maximum weight independent set: Start with the independent set I being empty. Choose a maximum weight vertex
[image: image11.wmf];

x

add
[image: image12.wmf]x

to I and delete
[image: image13.wmf]x

 and all its neighbors from the graph. Repeat until there are no vertices left. Prove that if the graph has maximum degree
[image: image14.wmf],

d

then I will be an independent set with weight within
[image: image15.wmf]1

d

of maximum. (Compare this problem with #10, page 656 of the textbook.)
4. Give an algorithm that will test an
[image: image16.wmf]variable

n

-

instance of 3-CNF for satisfiability in
[image: image17.wmf]O(3())

n

pn

time, where
[image: image18.wmf]()

pn

is a fixed polynomial. Hint: See the textbook, #2, pp. 594-595 for the solution: do parts (a) and (b) of that problem to complete the solution.
(over)

5. (extra credit) (Textbook, #3, p.596) Suppose we are given a directed graph
[image: image19.wmf](,),

GVE

=

with
[image: image20.wmf]12

(,,...),

n

Vvvv

=

and we want to decide whether
[image: image21.wmf]G

has a Hamiltonian path from
[image: image22.wmf]1

v

to
[image: image23.wmf].

n

v

 (That is, is there a path in
[image: image24.wmf]G

that goes from
[image: image25.wmf]1

v

to
[image: image26.wmf],

n

v

passing through every other vertex exactly once?)

Since the Hamiltonian Path Problem is NP-complete, we do not expect that there is a polynomial-time solution for this problem. However, this does not mean that all nonpolynomial-time algorithms are equally “bad”. For example, here’s the simplest brute-force approach: For each permutation of the vertices, see if it forms a Hamiltonian path from
[image: image27.wmf]1

v

to
[image: image28.wmf].

n

v

 This takes time roughly proportional to
[image: image29.wmf]!,

n

which is about 3 x
[image: image30.wmf]17

10

when
[image: image31.wmf]20.

n

=

Show that the Hamiltonian Path problem can in fact be solved in time
[image: image32.wmf]n

O(2()),

pn

×

where
[image: image33.wmf]()

pn

is a polynomial function of
[image: image34.wmf].

n

 This is a much better algorithm for moderate values of
[image: image35.wmf];

n

for example,
[image: image36.wmf]2

n

is only about a million when
[image: image37.wmf]20.

n

=

_1207396861.unknown

_1207462090.unknown

_1207469826.unknown

_1207470021.unknown

_1207470152.unknown

_1207471433.unknown

_1207470150.unknown

_1207470151.unknown

_1207470022.unknown

_1207469919.unknown

_1207469960.unknown

_1207469877.unknown

_1207462596.unknown

_1207462639.unknown

_1207469769.unknown

_1207462712.unknown

_1207462618.unknown

_1207462471.unknown

_1207462488.unknown

_1207462330.unknown

_1207398126.unknown

_1207461954.unknown

_1207462025.unknown

_1207398150.unknown

_1207397250.unknown

_1207398116.unknown

_1207397277.unknown

_1207397020.unknown

_1207397134.unknown

_1207396120.unknown

_1207396787.unknown

_1207396860.unknown

_1207396156.unknown

_1207394904.unknown

_1207395976.unknown

_1207394903.unknown

